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1. INTRODUCTION

Closed-form expressions for the transverse electric (TE) and transverse
magnetic (TM) modes of uniform waveguides with unusual cross-sectional
geometry are useful in several areas of electromagnetic theory. Both
microstrip-antenna analysis using cavity models (Reference 1) and high-
power microwave applications (Reference 2) require solution methods
capable of calculating accurate resonant frequencies and electromagnetic
field components. Typically, while analysis involving unusual geometries is
handled v.a approximate numerical techniques (References 3 through 6),
closed-form solutions are especially desirable for their physical and
computational simplicity as well as for their ability to provide checks on the
accuracy of numerical solutions.

In the past, closed-form TE and TM mode expressions for four perfectly
conducting uniform waveguides of triangular cross section were determined
using the superposition of plane waves technique (References 7 through 9).
All of these solutions have the general form of finite sums of rectangular
harmonics. Although each rectangular harmonic term alone satisfies the
Helmholtz equation, only the entire solution with particular relationships
among the eigenvalues satisfies the boundary conditions (either Dirichlet or
Neumann) as well.

Beginning with an initial solution formed using a finite sum of
rectangular harmonics and utilizing the symmetry properties (Reference 10)
of a particular waveguide geometry as well as the Riemann-Schwarz
reflection principle (References 11 and 12), we have found some closed-form
solutions for the TE and TM modes of certain three- and four-sided uniform
waveguides with unusual cross-sectional geometry. In the majority of cases,
we have assumed perfectly conducting walls; however, in some instances,

A -I' A "--

combinations of perfect electric (n x E = 0, n * B = 0) and perfect magnetic
A -+ A "-

walls (n x H =0, n * D =0) have been assumed. Although infinite sets of TE
and TM modes based on finite sums of rectangular harmonics have been
determined for each geometry, complete sets of modes (Reference 13) (in the
sense of the rectangular waveguide) are not found. We believe that this
imcompleteness of the mode sets is r consequence of solving geometries with
nonorthogonal boundaries that possess multiple reflections and periodic
extensions that cannot cover all of space. We believe that the "missing"
modes cannot have the form of finite sums of rectangular harmonics and
speculate that they may be determined from either infinite sums of
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rectangular harmonics or purely nonseparable solutions of the Helmholtz
equation (Reference 14).

Section II presents TE and TM mode expressions for the following
waveguide geometries and boundary conditions:

A. Isosceles right triangular waveguide with two electric and one
magnetic wall at x = a

B. Isosceles right triangular waveguide with two electric and one
magnetic wall at y = 0

C. Isosceles right triangular waveguide with two electric and one
magnetic wall at y = x

D. 45- and 135-degree parallelogram waveguide with perfectly
conducting walls

E. 90- and 90- and 135- and 45-degree waveguide with perfectly
conducting walls

F. 45- and 135-degret. trapezoidal waveguide with perfectly conducting
walls

G. 60- and 120-degree parallelogram waveguide with perfectly
conducting walls

H. 60- and 120-degree trapezoidal waveguide with perfectly conducting
walls.

In Section III, cutoff formulas and lowest order (i.e., the lowest found by
the above method) mode plots are presented. Section IV contains our
conclusions.

II. CLOSED-FORM TRANSVERSE ELECTRIC AND MAGNETIC SOLUTIONS
FOR UNUSUAL WAVEGUIDE GEOMETRIES

In this report, all waveguides are assumed to be uniform, i.e., with e'Yz
e' O t dependence and free space inside and outside the guide. In all cases,

2 2k, +k 2 --k! +y()

where

y=cz+ip (2)

4
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-= Eo9o= ( Xo)0

and ki and k2 are the transverse wave numbers.

A. ISOSCELES RIGHT TRIANGULAR WAVEGUIDE WITH TWO ELECTRIC AND ONE
MAGNETIC WALL AT x = a

Using the general form of solution for the perfectly conducting
waveguide of isosceles right triangular cross section (see Figure 1) as given
in Reference 9, we find by inspection that

Ez = sin klx sin k2y - sin k2x sin kly (4)

for the TM modes and

Hz = cos ktx cos k2y + cos k2x cos kly (5)

for the TE modes with the transverse wave numbers
~n

kl=M , k2=' I6
2a 2Y(6)

will satisfy the appropriate boundary conditions. There are restrictions on
the integer indices, m and n, such that for TM modes

m*n (7)

and for all modes both m and n must be odd.

Equations 4 and 6 must satisfy the boundary conditions

Ez=0 on y=0 , y=x (8a)

and

= on x=a(orE z =extremumonx=a)x ~(8 b)

(An extremum can be either a maximum or a minimum.) By inspection of
Equation 4, we see that Equation 8a is satisfied and that

-= k, cos klx sin k2y - k2 cos k2x sin kly

5
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can be 0 on x = a only when Equation 6 is used with both m and n odd integers.
The TE modes are usually of more practical importance than the TM modes in
waveguiding applications. Equation 5 must satisfy the boundary conditions

H- z
"--y =0 on y=O 

1a(10a)

al z alHz
on y (l0b)

Hz=O on x=a (10c)

Equation 10a is satisfied on y = 0 automatically. Hz is 0 on x = a provided m and
n in Equation 6 are both odd, just as for the TM modes. To show that Equation
l0b is true, we simply write

a -"-) -a= (-k, sin kix cos kx - k2 sin k2x cos kx)

+ (k2 cos k1x sin k2x + kI cos k2x sin klx)=0 ( 11)

The lowest order mode found from Equations 5 and 6 is the TE1 I mode (m = n is
allowed for TE modes) with a distribution (see Figure 12)

Hz (TElI) = 2 cos 11 cos -- 2
2a 2a (12)

The TE 1 3 and TM 13 are the second lowest order modes found in this way.

B. ISOSCELES RIGHT TRIANGULAR WAVEGUIDE WITH TWO ELECTRIC AND
ONE MAGNETIC WALL AT y = 0

Consider the isosceles right triangular waveguide in Figure 2. This
solution is difficult to achieve by symmetry and inspection. (We could, of
course, determine it by rotation and translation-it is the same situation as in
Equations 4, 5, and 6.) If we use superposition of plane waves and substitute
boundary conditions as in Reference 9, we find that (for TM modes)

Ez = cos k1x cos k2y - cos k2x cos kly (13a)

with

6
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~n
kl=--- , k2= -"!wb

2a (13b)

will match the boundary conditions, i.e.,

Ez=O onx=a , y=x (14a)

-z =0 on y=O
(14b)

k I and k2 are given by Equation 13b, with both m and n odd integers, in * n.
The lowest order TM mode is the TMI 3 . The TE modes must satisfy

allz
-x =0 on x=a (15a)

alHz alHz--- -- = 0 on x= yo x(15b)

HZ=0 on y= 0  (15c)

Again using symmetry and an initial form based on a finite sum of
rectangular harmonic terms, we find that the TE modes are given by

Hz = sin kjx sin k2 y + sin k2x sin kly (16)

with k1 and k2 as in Equation 13b. The boundary conditions in Equation 15
are again satisfied provided both m and n are odd integers. For the TE modes,
m = n is allowed. The TEI I mode is the lowest order mode with the form of
Equation 16 and has a distribution (see Figure 13)

H z (TEI,) = 2 sin -. sin -- 7
2a 2a (17)

Naturally, it is the same distribution-only rotated-as for Section II. Part A.
The TE 1 3 and TM13 are the second lowest order modes.

C. ISOSCELES RIGHT TRIANGULAR WAVEGUIDE WITH TWO ELECTRIC AND

ONE MAGNETIC WALL AT y = x

For TM modes, we attempt a solution of the form (see Figure 3)

Ez = sin ktx sin k2y + sin k2x sin kly (18)

7
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with

kj=M- I k2= ni
a a (19)

For this situation, we must satisfy

Ez=0 on y=O and x=a (20a)

aEz E
-x - =0 on y=xaX ay(20b)

By inspection, we see that the boundary conditions in Equation 20 are
satisfied and place no restrictions on the values of m and n (except that they
must be integers and m * 0, n * 0). Thus, the TM1 I is the lowest order TM mode.

The TE modes must satisfy

alHz

-j- =0 on y=0U)' (21 a)

DHZ
ax =0 on x=a (21b)

Hz=0 on y=x (21c)

Using

Hz = cos kjx cos k2y - cos k2x cos kly (22)

with

nn
kl=M k2= --

a a (23)

the boundary conditions in Equation 21 are satisfied by inspection. The only
restriction is m * n in Equation 22. The lowest order mode of this structure is a
TEI 0 mode (see Figure 14) given by

Hz (TE) = cos M - cos icy
a a (24)

The second lowest order mode is the TMI 1, i.e.,

8
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Ez (TM 11) = 2 sin sin -Y
a a (25)

The next lowest modes are the TE12 and TM12 .

D. 45- AND 135-DEGREE PARALLELOGRAM WAVEGUIDE WITH PERFECTLY
CONDUCTING WALLS

Consider the parallelogram geometry in Figure 4. Since the 45- and 135-
degree parallelogram is composed of two isosceles right triangles oriented
back to back, we use the general form of solution in Reference 9 and find, by
inspection, that for TM modes possible solutions are given by

Ez = sin klx sin k2y - sin k2x sin kly (26)

with

k, = k2 = n
a a (27)

The boundary conditions for this parallelogram are

Ez=O on y=O , y=a , y=x , and y=x-a (28)

Obviously, Equation 26 is zero for y = 0, y = a, and y = x. The fourth boundary
condition, y = x - a, when substituted into Equation 26 gives

Ez = sin kjx (sin k2x cos k2a - cos k2x sin k2a)

- sin k2x (sin klx cos k1a - cos kjx sin k1a) (29)

Equation 29 can be zero only if

sin k1a=0 and sin k 2a=0 (30a)

as well as

cos k1a = cos k2a (30b)

Equation 30a is satisfied by any integers m and n, but Equation 30b requires
that (using Equation 27)

cos m7c = cos n7c (31)

9
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This implies that both m and n must be even or they both must be odd, with
m * 0, n * 0. and m * n. For Ez, as given by Equations 26 and 27, no m even, n
odd (or vice versa) modes can satisfy all four boundary conditions
simultaneously. This means that the TM1 3 is the lowest order TM mode found
by the above procedure. We see from Equation 26 that Ez is 0 not only on the
walls but also along the line x = a (see Figure 4). This means that we have
found a set of modes that is "odd" about the line x = a; thus, there should exist a
corresponding set of modes "even" about x = a, i.e., Ez should be a maximum
there. This observation originally motivated the isosceles right triangular
solutions with a magnetic wall at x = a. Unfortunately, any attempt to use
Equations 4 and 6 as the starting point for a set of TM solutions that are
maximum on x = a but still zero on the walls is doomed to failure. From
Equations 4 and 6, we see that there is no way for Ez = 0 on y = 0 and on y = a
simultaneously if Ez is to be maximum on x = a.

For the TE modes, we choose

H= cos k1x cos k2Y + cos k2x cos kly (32)

n7ck,= k2= T
a a (33)

subject to Z = on the walls. Just as for the TM modes, we find that either
both m and n must be even or both m and n must be odd and m = n is allowed.
Thus, the TEI , mode is the lowest order TE mode found using Equations 32 and
33. Its distribution is (see Figure 15)

H, (TEl1) = 2 cos cosa a (34)

The next lowest mode is the TE20, followed by the TE2 2 , and then the TM 13 and
TE 1 3 modes.

In comparing the perfectly conducting isosceles right triangular
waveguide with the 45- and 135-degree parallelogram waveguide, it is evident
that only about half of the modes that satisfy the triangular boundary
conditions also satisfy the parallelogram boundary conditions. Any even-odd
correspondence (and vice versa) between the mode indices (m and n) has
been eliminated by the y = x - a boundary condition. Since the isosceles right
triangular modes form a complete set (Reference 13), we conclude that some
of the modes Jor the 45- and 135-degree parallelogram are missing, including
the true lowest order mode.

Using finite difference analysis (Reference 15) of the 45- and 135-degree

parallelogram waveguide, we can indeed show that the above TEl I

10
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distribution is actually only the third lowest order mode of the structure.
There are two modes with lower cutoff wave numbers, and we conclude that
these two modes cannot be found in closed form using a finite sum of
rectangular harmonics.

E. 90- AND 90- AND 135- AND 45-DEGREE WAVEGUIDE WITH PERFECTLY
CONDUCTING WALLS

Consider the four-sided waveguide cross section shown in Figure 5. It is a
combination of a square and an isosceles right triangle. Using the isosceles
right triangular solution for TM modes given previously, we assume that

Ez = sin kjx sin k2y - sin k2x sin kly (35)

with

n7xk, = k2 =
a a (36)

as usual for this type of boundary. The boundary conditions in Equation 37
for the TM modes of this geometry are

EZ=0 on y=O , x=0 , x=a , y=x+a (37)

By inspection, we see that the first three conditions in Equation 37 are met.
For the fourth condition, Ez becomes

Ez = sin klx sin k2 (x + a) - sin k2x sin k, (x +a)

= sin klx(sin k2x cos k2a + cos k2x sin k2a)

- sin k2x(sin klx cos kja + cos klx sin k1a) (38)

Thus, for Ez to be zero on y = x + a, we must have

sin k 1a=0 and sin k2a=0 (39a)

simultaneously, along with

cos k1a = cos k2a (39b)

To satisfy the conditions of Equation 39a, m and n must be integer. To satisfy
the condition of Equation 39b, we must have both m and n odd or both m and n
even, m * 0, n * 0, m * n. This is the same solution and integer restrictions
found for the 45- and 135-degree parallelogram. However, in this instance,
we have another TM solution.

11
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If

Ez = sin kjx sin k2y + sin k2x sin kly (40)

with

a a (41)

we see that the first three boundary conditions are again satisfied term by
term and the y = x + a condition forces

sinkja=0 , sin k2a=0 (42a)

but now

cos k1a = - cos k2a (42b)

Again, m and n must be integer, but now if m is odd, n must be even and vice
versa. Thus, the solution in Equation 40 allows a TM1 2 mode, which satisfies
all boundary conditions simultaneously and is the lowest order TM mode found
using the initial forms given by Equations 35 and 40.

For the TE modes, we have a similar situation. One solution is given by

H z = cos klx cos k2 y + cos k 2x cos kly (43)

with the eigenvalues as in Equation 41. We must satisfy

aHz
-l-n =0 on x=0 , y=O , x=a , y=x+ain- (44)

As for the TM modes, the first three conditions in Equation 44 are seen to be
satisfied by Equation 43 by inspection. On y = x + a, we must satisfy

(aHz  alHz  =

- Y y=!+a (45)

Upon taking the derivatives and substituting in the fourth boundary
condition, we have

12
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( -aH aly -z [-k1 sin klx cos k2 (x + a)

- k2 sin k2x cos k, (x + a)] - [- k2 cos kjx sin k2 (x + a)

- k, cos k2x sin k, (x + a)] (46)

(aHlz aHlz'
F- = - k, sin klx(cos k2x cos k2a - sin k2x sin k2a)

- k2 sin k2x(cos kjx cos k1a - sin kjx sin k1a)

+ k2 cos klx(sin k2x cos k2a + cos k2x sin k2a)

+ k, cos k2x(sin kjx cos kja + cos kjx sin k1a) (47)

For this to be zero, we see that

sin kja=0 and sin k2a=0 (48a)

and

cos k1a = cos k2a (48b)

Thus, both m and n are even or both m and n are odd, with m = n allowed.

The other set of TE solutions is given by

H z = cos kjx cos k2y - cos k2x cos kly (49)

with

mx nx
k, = 7C , k2 =

a a (50)

As for the TM modes, again we see that (for the y = x + a boundary condition)

sinkla=O and sink 2a=0 (51a)

but now

13



NWC TP 6989

cos kja=- cos k2a (51b)

Thus, m must be even, n odd, and vice versa. This second TE solution allows a
TE10 mode as the lowest order mode derived from finite sums of rectangular
harmonics found for this guiding structure. The TE 1 0 mode has the form (see
Figure 16)

H, (TEw) = cos - cos -
a a (52)

The next lowest modes are the TE Il (see Figure 17) from Equation 43 and the
TM 12 from Equation 40. Just as for the 45- and 135-degree parallelogram
waveguide, we do not have a complete set of modes and the true lowest order
mode is missing. A finite difference analysis shows that there is one mode
below the TE 1 0 of Equation 52 that has not been determined in closed form
(Reference 16).

F. 45- AND 135-DEGREE TRAPEZOIDAL WAVEGUIDE WITH PERFECTLY
CONDUCTING WALLS

Consider the trapezoidal geometry oriented as in Figure 6. For the TM
modes, we must satisfy

Ez=O on x=O,a ; y=±X+.+) 2 (53)

As previously, we attempt a solution of the form

Ez = sin kjx sin k2y - sin k2x sin kly (54)

with

2m~t 2n__
k, 2= -- k2 = --~

a a (55)

By inspection, Ez in Equation 54 is zero on x = 0 and a. Substituting the
(y = x + a/2) boundary condition into Equation 54,

EZ = sin ktx(sin k2x cos 4 + cos k2x sin

sin k2x(sin ktx - 2 F cos k sin 2 (

(56)

14
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Equation 56 can be zero when

k1a k2asin--.=O and sin--=O2 =2 (57a)

simultaneously with

k1a k2a
COS2 2 (57b)

Equation 57 becomes (using Equation 55)

sin mi= 0 and sin rn = 0 (58a)

with

cos 1 = cos n7t (58b)

Thus, m and n integer satisfy Equation 58a, and Equation 58b implies that
either both m and n are even or both m and n are odd. [The y =-(x + a/2)
condition gives the same result as above.] By considering the -form of
Equation 56, we see that another solution is

Ez= sin klx sin k2y+ sin k2x sin kly (59)

using Equation 55.

Using Equation 59 and substituting in y = x + a/2, we now have the

conditions

sin mc =0 and sm ni = 0 (60a)

and

cos m7t = - cos nic (60b)

for Ez in Equation 59 to be zero on y = ±(x + a/2). Now if m is an even integer,
n must be odd and vice versa.

Equations 54 and 59 are solutions that are zero on y = 0. Thus, these
solutions are odd with respect to the center of the trapezoid, and we would like
also to find solutions that are even with respect to y = 0. We attempt a solution
of the form

Ez = sin klx cos k2y ± sin k2x cos kly (61)

with

15
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Urn - 1)x (2n - 0)C
a k2  a (62)

Again, Ez = 0 on x = O,a by inspection.

Using y = x + a/2 in Equation 61, we have

E7 = sin kx cos k2x cos T - sin k2x sin -

± sin k2x cos klx cos - sin k x sin2 2(63)

Equation 63 can be zero if
k2a k~a

cos = 0 and cos = 0
2 2 (64a)

simultaneously withI . k2a kla
sin 2 - sin la for the plus sign in Equation 61

k2a .kla
sin 2 =si - for the minus sign in Equation 612 2 (64b)

Thus, we see from Equation 64 that for the minus sign in Equation 61, we must
have both m and n even or both m and n odd. For the plus sign, we must have
m even, n odd, and vice versa. To summarize the TM modes, we have

EL = sin kjx sin k2y - sin k2x sin kly ; (65a)

both m.n even (odd)

E 2 =sin kjx sin k2y + sin k2x sin kly ; (65b)

m even, n odd (or vice versa) with

2m ,k 2nx
a a (65c)

16



NWC TP 6989

m * 0, n * 0 for Ez(M) and Ez( 2); m * n for Ez(I) only.

(3)F_; = sin klx cos k2y - sin k2x cos kly (66a)

both mn even (or odd)

(4)E 4 = sin kjx cos k2y + sin k2x cos kly ; (66b)

m even, n odd (or vice versa) with

(2m - 1)7c (2n -1)7
k1 = a k2 = a (66c)

and m * n for Ez(3) only. The TE modes must satisfy

alHz
-j--=0 on x=O,a

Ux (67a)

a---z aly. =0 on y=± x+I
T-= a=±y 2(67b)

We use the TE solution for the isosceles right triangular waveguide as usual

and

Hz= cos kix cos k2y + cos k2x cos kly (68)

with

2m ,k2 2ni
a k2 -a (69)

Equation 67a is satisfied immediately. Substituting y = x + a/2 into Equation
67b,

allz al= k , sin k x cos k ( x+

-k 2 sink 2x cos-k 1 + ) ck2 coskxsink2  +

- k cos k2x sin k (x + 2)] (70)
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(aHZaH~ k2a ka
Y) - k1 sin klx (cos k2 cos-- sin k2x sin

y=x+ -

- 2 sin k2xCOS klx cos ! - sin klx sin

+ k2 cos klx (sin k2x cos.. + cos k2x sin-

" k, cos k2x sin kx cos a + cos kx sin (71

2 2 (71)

Equation 71 is zero provided

k1a k2a
sin -= 0 and sin - 0

2 2 (72a)

along with

k1a k2acos - = cos - 7b
2 2 (72b)

Thus, both m and n must be even integers or both m and n are odd integers,

just as for Ez ( 1). [We obtain the same result when y = -(x + a/2).1 Also from
Equation 71, we see that

H z = cos klx cos k2y - cos k2x cos kty (73)

along with Equation 68, is a solution provided m is an even integer, while n is
odd and vice versa. Just as for the TM modes, we have two more solutions, i.e.,

H Z =cos klx sin k2y ± cos k2x sin kly (74)

with

Urnm- OnT 2n - Oni
k, a k2  a(75)

which now go to zero along y = 0. Equation 74 obeys Equation 67a by
inspection. Equation 67b becomes (using Equation 74)

18
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x aH = - k sin kX sin k2 x +ok s

+ k2 sin k2x sink, kX+ s +k 2 cos klx cos ik 2  +

-~- ,2 k 2

- k2 cos klx osk 2x cos = - sin k2 x sin )

k, cos k2x cos kx cos T-sinkixsin

2 (76)

Equation 77 can be zero provided

kla k2a

T ad 2 2 (78a)

along with

I + s for the plus sign in Equation 74

2 2

sin = - s kla for the mns sin Equation 74
(78b)

Thus, the TE solutions follow restrictions on integers m and n similar to the
TM modes. That is, for the plus sign in Equation 74, both m and n must be

even or both m and n must be odd; for the minus sign, m must be even and n
odd or vice versa.

To summarize the TE modes, we have
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H(1) cos klx cos k2y + cos k2x cos kly (79a)

both m, n even (or odd)

H = cos kjx cos k2y - cos k2x cos kly (79b)

m even, n odd (or vice versa) with

2mxr 2nx
k, - - , ak2 --- -

a a (79c)

and

H(3)
Hz = cos klx sin k2y + cos k2x sin kly (80a)

both m, n even (or odd)

H(4) cos kx sin k2y - cos k2x sin kly (80b)

m even, n odd (or vice versa) with

k,=(2m - lOn 9 2 n - I)n
a , a (80c)

The lowest order mode of this trapezoidal geometry (note that the top length
and the width of the trapezoid are both equal) determined from Equations 79
and 80 is the TE1  mode given by Hz( 3). Its distribution is (see Figure 18)

H (3) (TE,1 ) = 2 cos -- sin --
a a (81)

The exact same mode can be found from Equation 80b with m = 0, n = 1. The
next lowest mode is the TEJ 0 mode given by Equation 79b, i.e.,

( (TEJO) = Co - os 2--
a a (82)
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G. 60- AND 120-DEGREE PARALLELOGRAM WAVEGUIDE WITH PERFECTLY
CONDUCTING WALLS

Using the solutions found previously for the equilateral triangular
waveguide (Reference 9), we can achieve some solutions for a 60- and 120-
degree parallelogram oriented as in Figure 7. We assume that (for TM modes)

41) = sin 2kx sin 2k2y + sin k3x sin k4y + sin k5x sin k6y (83)

with

2m~ 2nic (m + n)2ir (n - 3m)27tk, k2 = ,k3 = ar. ,k4 =  3
,-r 3a 3  a-F3 3a

(m - n)2t (n + 3n)2r
k :- a ' k 3 a ( 8 4 )

We know that this solution for Ez ( ) is zero on x = a4l3/2 and x = y4 3. Also, we
see immediately that it is zero for x = 0. So we need to check only the fourth
boundary condition of the 60- and 120-degree parallelogram geometry, i.e.,
y = x/43 - a/2 or x = y-43 + 4 3a/2. Substituting this into Equation 83, we have

) =sin2k, iN(y+2)sin2k2y+sinkf(y F3)sin k4y

+ sin ks45 (Y + sinkY (85)

Using the ki (i = I to 6) given above, the arguments of the sine terms in
Equation 85 become

2k 1 T (y + 2) m y + 2mi
2)= a (86a)

4niry
2k2Y = (86b)

k3  (y +2)= 2n(m + n)y + 7(m + n)
1a (860
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k4 Y = (n - 3m)2nykY= 3a (86d)

k5 .1-.(y + 2E 21c(m - n)y +nm-n= + (m - n)
2) a (86e)

k6Y = (n + 3m)2irykY= 3a ( 86 f)

Now let

A= 2... B = 2n7y

a 3a (87)

Using Equations 86 and 87 and substituting into Ez ( in Equation 85, we have

E ) = sin (2A + 2mn) sin 2B + sin [A + 3B + 7(m + n)] sin (B - A)

+ sin [A - 3B + 7(m - n) sin (B + A) (88)

Using the double-angle formulas, i.e.,

sin (A± 3B)=sinAcos 3B ±cos A sin 3B=Ul+ U2  (89a)

sin (B ± A) = sin B cos A ±cos B sin A = V1 ± V2  (89b)

and

sin [A ± 3B + 7n(m ± n)] = sin (A ± 3B) cos 7t(m ± n)

(provided m and n are integer)

+ sin (A ± 3B)for m+ I even

4

sin (A ±3B) for m +fl} odd
(90)

we see that
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E = sin2Asin2B±(U1 +U 2)(V 1 - V2) (Ul - U2)(V 1 + V2) (91)

= sin 2A sin 2B ± 2(UIV I - U2V2) (92)

= sin 2A sin 2B ± 2[sin A cos A (sin B cos 3B - cos B sin 3B)] (93)

= sin 2A sin 2B ± sin 2A sin (-2B) (94)

At this point, we see that the plus sign in Equation 90 must be used to force
Ez ( to be 0. Therefore, we must have both (m + n) and (m - n) even to match
all the boundary conditions. For the other solution, i.e., a solution that is even
about y = 0 (Reference 9). we have

(2)=F = sin 2kjx cos 2k 2y - sin k3x cos k4y - sin k5x cos k6y (95)

along with Equation 84. In a similar manner as for Ez 1 , we can show that
both (m + n) and (m - n) must be even in order for our solution to obey the
fourth boundary condition. As in the equilateral triangular waveguide, Ez( I)

is zero on y = 0, the "odd" solutioi., whereas, Ez( 2 ) is an extremum on y = 0, the
"even" solution. For the odd types of TM modes, we must have m * 0, n * 0,
m *n, and n *3m. For the even TM modes, we must have m *0 and m *n. The
lowest order TM mode is given by Ez( 2), and it is a TM20 mode.

The TE modes are given also by the corresponding equilateral triangular
TE solutions, i.e.,

HZ = cos 2klx cos 2k 2y + cos k3x cos k4y + cos k5x cos k6y (96a)

H(2) = cos 2klx sin 2k 2y - cos k3x sin k4y - cos k5x sin k6y (96b)

with the ki's given by Equation 84. Again, we find that both (m + n) and
(m - n) must be even to satisfy the condition on the fourth boundary.
Furthermore, for the Hz( 2) solutions, n * C and n * 3m. The TEl I mode is the
lowest order mode determined in the above way for this structure. Its
distribution is (see Figure 19)

H(1) (TEl ) = 2 41cx 4nty S 87y

SCOS a , TY COS 3a + 3a (97a)

which is even about y = 0 and (see Figure 20)
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()4itx 47ty 8i'y

H(2) (TE, )= 2 cos - sny _ sin
a ,.s 0 3a (97b)

which is 0 on y = 0.

H. 60- AND 120-DEGREE TRAPEZOIDAL WAVEGUIDE WITH PERFECTLY
CONDUCTING WALLS

The 60- and 120-degree trapezoidal waveguide, oriented as in Figure 8,
must satisfy the following boundary conditions for TM mode solutions. These
are

E =0 on x=0 x=-- 9y=8
2 9 ( F3 2)(98)

Again, we attempt to use the equilateral triangular waveguide solutions, i.e.,

Ez sin 2kjx sin 2k2y + sin k 3 x sin k4y + sin k5x sin k6y (99)

with the ki as in Equation 84. We know that E7 is zero on x = 0 and x = a43/2 by
inspection. To check the y =x/3 + a/2 condition, we use Equations 99 and 84
to give

Ez = sin 2k, 43 (y - sin 2k2y + sin k3  (y - 2) sin k4y

+ sin ksr'(y - 2.) sin k6y (100)

Using Equation 86 (with minus signs between the terms in Equations 86a, 86c,

and 86e) and Equation 87 and substituting into Ez in Equation 100. we have

Ez = sin (2A - 2m) sin 2B + sin [(A + 3B) - n(m + n)I sin (B-A)

+ sin [(A - 3B) - (m-n) sin (B + A) (101)

Using Equation 89 and observing that (for m and n integer)
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sin [(A ± 3B) - 7t(m ± n)] = sin (A ± 3B) cos 7c(m ± n)

sin (A ± 3B) for m+nl evenIm- n

-sin(A±3B) for 1 m+n 1 odd
In- n (102)

is just the same as Equation 90, then Ez will be zero provided both (m + n) and
(m - n) are even (following Equations 91 through 94). [The same result
obtains from y = -(x/ 4 3 + a/2)].

In the case of the trapezoid, we see that another solution is possible where
the minus signs in Equation 102 are used. Thus,

E,= sin 2ktx sin 2k 2 y - sin k3 x sin k 4y - sin k5 x sin k6y (103)

with both (m + n) and (m - n) odd, and the ki given by Equation 84 is another
solution. Furthermore, there are two -more solutions that are maximum on y -
0 and these are

E z = sin 2klx cos 2k2y ± sin k3 x cos k4 y ± sin k5 x cos k6 Y (104)

with both (m + n) and (m - n) even for the minus signs in Equation 104 and
both (m + n) and (m - n) odd for the plus signs in Equation 104. The ki are
still given by Equation 84.

The TE modes exhibit the same type of behavior. Without detail, these are

(1)
H 1 = cos 2ktx cos 2k 2y + cos k3 x cos k4 y + cos k5 x cos k6 y (105)

with the ki as in Equation 84 and both (m + n) and (m - n) even. Also, we have

2 ) = cos 2klx cos 2k2y - cos k3 x cos k4y - cos k5x cos k6y (106)

with both (m + n) and (m - n) odd.

Finally,

(3)
(4)H ) = cos 2ktx sin 2k 2y ± cos k3x sin k4 y ± cos k5 x sin k6y (107)
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with the ki as in Equation 84 and both (m + n) and (m - n) even for the minus
signs in Equation 107 and both (m + n) and (m - n) odd for the plus signs. The
lowest TE mode found from the above four solutions is the TE0 1 mode (see
Figures 21 and 22), i.e.,

H3)O (TEO,) _sin 47Y 2 cos 7c sin 2'

S3aa23 (108a)

which is zero on y = 0 and its counterpart
47ty _ 2 x2ix 2ixy

H(2) (TE01 ) - cos na 2 cos 7 cos3a a43  3a (108b)

which is even about y = 0.

M. CUTOFF FORMULAS AND MODE PLOTS

A. ISOSCELES RIGHT TRIANGULAR WAVEGUIDE WITH TWO ELECTRIC AND ONE
MAGNETIC WALL

(k) =(- n(2) (109)

is the cutoff wave number of this structure. We have claimed that the TE 1 I
mode is the lowest order mode found by the methods of Section II. Thus,

2 X 2
2a2 (110)

The corresponding cutoff wavelength for this mode is

-I11=,r(111)

which is larger than that of the corresponding square waveguide of x
dimension, a (see Figure 9). Considering this fact along with the structure of
the contour lines of constant Hz for the TEll mode as shown in Figure 12, this
mode is truly the lowest order mode of this guide. We see from a comparison
of Figures 12 and 13 that we obtain the same result whether the magnetic wall
is fixed at x = a or at y = 0, as expected.
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B. ISOSCELES RIGHT TRIANGULAR WAVEGUIDE WITH TWO ELECTRIC AND ONE
MAGNETIC WALL AT y = x

For this geometry, the cutoff wave number is

2  2 (112)

which is the same as that for the isosceles right triangular waveguide with
perfectly conducting walls (also the same as for the square waveguide of side
a). The lowest mode is the TE1 0 mode shown in Figure 14. Its cutoff is

(113)

and its cutoff wavelength is

(X)0 = 2a (114)

Thus, this is also a true lowest order mode.

C 45- AND 135-DEGREE. PARALLELOGRAM WAVEGUIDE WITH PERFECTLY
CONDUCTING WALLS

This structure has the same cutoff formula as the isosceles right
triangular waveguide (Reference 9) given by Equation 112. However,
because of the integer restrictions necessary for satisfaction of the fourth
boundary conditions, the lowest order mode found is the TE1 1 (see Figure 15).
Thus, its cutoff wave number is

2 (,X )2

(kc)21 = 2 a (115)

and

(X,)11 = aNl2 (116)

We know (see Section II and Reference 15) that there are two modes with
cutoff wave numbers lower than the above TEl 1 mode, but we have been
unable to determine them in closed form.
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D. 90- AND 90- AND 135- AND 45-DEGREE WAVEGUIDE WITH PERFECTLY
CONDUCTING WALLS

This geometry has the same general cutoff formula as the 45- and 135-
degree parallelogram waveguide (see Equation 112). In this case, we do have
a TEl 0 mode (see Figure 16), but it is not the lowest order mode (see Section II
and Reference 16). Its cutoff wavelength is

(XC)t0 = 2a (117)

just as for the rectangular waveguide. However, this is not a true lowest order
mode (see Figure 16).

E. 45- AND 135-DEGREE TRAPEZOIDAL WAVEGUIDE WITH PERFECTLY
CONDUCTING WALLS

Thi- trapezoidal waveguide contains a high degree of symmetry, i.e., not
only are the four angles either 45 or 135 degrees but the length of its "top"
section along x = 0 is equal to its width a (see Figure 6). Its cutoff formula is
given by

2 4 2

(kc)m2n 47E"2 (n 2 + n2 )
a (118a)

for certain solutions, while

2

(k)n= [(2m- 1)2+ (2n- 1) 2

a (1 18b)

for the other solutions (see Section II, Equations 79 and 80). The lowest order
mode is the TEl I mode given by Equations 118b and 80a. Its cutoff wave
number and wavelength are

2 72

a2 ( 119)

or

(Xc)ii = aVI2 (120)

Since Equation 120 is smaller than the cutoff wavelength for the rectangular
waveguide, it is likely that our TEl I mode in Equation 81 is not a true lowest
order mode. Contour lines of constant Hz are shown in Figure 18 for this TEl 1
mode.
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F. 60- AND 120-DEGREE PARALLELOGRAM WAVEGUIDE WITH PERFECTLY
CONDUCTING WALLS

The cutoff formula for this geometry is the same as for the equilateral
triangular waveguide (see Reference 9)

2_ (41) 2 2 n2
3a2  

(121)

The TEl I mode (see Figures 19 and 20) is the lowest order mode found from

Equation 96.

Thus,

2 (4)2 (4)\3a 3 
(122)

and

3a
4 (123)

If we compare the values in Equations 122 and 123 with those for the
equilateral triangular guide (Reference 9), we see that although we have
solutions that are even and odd about y = 0, these TE 1 1 solutions are not the
true lowest order modes (see Reference 16).

G. 60- AND 120-DEGREE TRAPEZOIDAL WAVEGUIDE WITH PERFECTLY
CONDUCTING WALLS

This waveguide has the same general cutoff formula as given above by
Equation 121. In this instance, however, we have a TE01 mode, which may be
a true lowest order mode. It has a cutoff wave number given by

( 3a( ) (124)

(the same as for the lowest order mode of an equilateral triangular
waveguide), and its corresponding cutoff wavelength is

3a
O.c)1T (125)
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Just as for the equilateral triangular waveguide, this mode has two
distributions, one of which is even and the other odd about y = 0 (see Figures
21 and 22).

IV. CONCLUSIONS

Closed-form mode solutions for eight uniform waveguides with unusual
cross-sectional geometries/boundary conditions have been determined using
finite sums of rectangular harmonics, symmetry, and the Riemann-Schwarz
reflection principle. Although infinite sets of transverse electric and
transverse magnetic modes are generated for these eight geometries,
complete sets of modes (in the sense of the rectangular waveguide) have not
been determined. In particular, the lowest order modes of certain shapes are
"missing." We have speculated that these "missing" modes do not have the
form of finite sums of rectangular harmonics and must be found using either
an infinite sum of rectangular harmonics or a purely nonseparable type of
solution.
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VI. FIGURES
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Y, IyI

Z450-

I x

FIGURE 1. Isosceles Right Triangular Waveguide With Two
Electric Walls and One Magnetic Wall at x =a (Dashed
Line).

y

450

x
(a, o)

FIGURE 2. Isosceles Right Triangular Waveguide With Two
Electric Walls and One Magnetic Wall at y = 0 (Dashed Line).

33



NWC TP 6989

0 (a, a)

Y/

(a. 

/
V /

/
/

/
/

/
/

/
/450 - >

(a, o)

FIGURE 3. Isosceles Right Triangular Waveguide With
Two Electric Walls and One Magnetic Wall at y = x (Dashed
Line).
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FIGURE 4. 45- and 135-Degree Parallelogram Waveguide
With Perfectly Conducting Walls.
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(a, 2a)
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4150

(o. al1 1350

FIGURE 5. 90- and 90- and 135- and 45-Degree
Parallelogram Waveguide With Perfectly Conducting
Walls.

Y

(a, o)/2

450

(a, - 3a/2

FIGURE 6. 45- and 135-Degree Trapezoidal Waveguide

With Perfectly Conducting Walls.
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FIGURE 7. 60- and 120-Degree Parallelogram Waveguide
With Perfectly Conducting Walls.
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FIGURE 8. 60- and 120-Degree Trapezoidal
Waveguide With Perfectly Conducting Walls.
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,9IGURE 9. Contour Plot of TEl0 Mode for Square Waveguide.
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FIGURE 10. Contour Plot of TE 10 Mode for Isosceles Right Triangular
Waveguide With Perfectly Conducting Walls.

38



NWC TP 6989

1.0

0.8 1.50

1.00

0.6 0.5o

- - --------

Y -0.00

0.4 ----

0.2 e " -i-
0.0

0.0 0.2 0.4 0.6 0.8 1.0

x

FIGURE 11. Contour Plot of TEI I Mode for Isosceles Right Triangular
Waveguide With Perfectly Conducting Walls.
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FIGURE 12. Contour Plot of TE; 1 Mode for Isosceles Right Triangular
Waveguide With a Magnetic Wall at x = 1.
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FIGURE 13. Contour Plot of TE1 1 Mode for Isosceles Right Triangular
Waveguide With a Magnetic Wall at y = 0.
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FIGURE 14. Contour Plot of TE10  Mode for Isosceles Right Triangular
Waveguide With a Magnetic Wall at y = x.
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FIGURE 16. Contour Plot of TE10 for 90- and 90- and 135- and
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FIGURE 17. Contour Plot of TEll~ Mode for 90- and 90- and 135-

and 45-Degree Waveguide.
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FIGURE 19. Contour Plot of TEI I Mode for 60- and 120-Degree Parallelogram
Waveguide (Even Solution).
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FIGURE 20. Contour Plot of TE1 l Mode for 60- 4nd 120-Degree Parallelogram
Waveguide (Odd Solution).
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FIGURE 21. Contour Plot of TEO 1 Mode for 60- and 120-
Degree Trapezoidal Waveguide (Odd Solution).
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FIGURE 22. Contour Plot of TEO I Mode for 60- and 120-
Degree Trapezoidal Waveguide (Even Solution).

50



IDiTIA DIMMflCE

2 Naval Air Syrtems Command (AIR-5004)
2 Naval Sea Systems Command (SEA-09B312)
1 Commander in Chief, U. S. Pacific Fleet, Pearl Harbor (Code 325)
1 Commander, Third Fleet, San Francisco
1 Commander, Seventh Fleet, San Francisco
2 Naval Academy, Annapolis (Director of Research)
1 Naval War College, Newport
1 Air Force Intelligence Agency, Bolling Air Force Base (AFIA/INTAW, Maj. R. Esaw)
1 Air Force Weapons Laboratory, Kirtland Air Force Base (NTAAB, Dr. C. E. Baum)

12 Defense Technical Information Center, Alexandria
1 Hudson Institute, Incorporated, Center for Naval Analyses, Alexandria, VA (Technical

Library)
1 University of California, Riverside, CA (Prof. G. Everett)
1 University of Illinois (College of Engineering), Chicago, IL (Prof. P.L.E. Uslenghi)
1 Dr. Paul Wacker, La Crescenta, CA

4II


